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Abstract: 19 
The analysis of partially-balanced incomplete block (PBIB) ranked data is discussed. Two 20 
examples are given to illustrate two alternative approaches. Analysis of PBIB ranking data is 21 
not covered in any of the standard sensory evaluation texts and this expository note is meant to 22 
help fill this gap. For some data sets the calculations for the first approach are simple enough to 23 
do by hand. The second approach that we consider assumes that computer software for general 24 
analysis of variance is available. Such analysis of variance software should cope with missing 25 
values via a regression method. A suggested multiple comparisons algorithm is also illustrated. 26 
R code is given to allow easy application of our first approach. 27 
 28 
Practical applications: 29 
Sensory fatigue can be a problem in some sensory evaluation trials. In the taste-test area this is 30 
sometimes called “palate paralysis”. To cope with this fatigue, balanced incomplete block 31 
designs can be employed. However, these restrict the sensory scientist to particular 32 
combinations of products, subjects and evaluations per subject. Sometimes such restrictions 33 
can be prohibitive and then partially-balanced designs which allow more freedom in the choice 34 
of these parameters can be used. Here we consider statistical analysis of ranking data from 35 
partially-balanced incomplete block designs. 36 
 37 
Keywords: 38 
multiple comparisons; palate paralysis; R code; sensory fatigue; tied ranks 39 
  40 
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1. Introduction 41 
 42 

According to a number of authorities on the conduct of taste tests, it is not desirable to 43 
taste more than about four products at one tasting session. For example, Gacula et al. (2009, 44 
p. 169) say “When the panellists are judging several food items, taste fatigue occurs and may 45 
produce biased responses.” Some authors refer to taste fatigue as palate paralysis. A commonly 46 
suggested solution is to use a balanced incomplete block (BIB) design. For example see Gacula 47 
et al. (2009). 48 

For such a design, however, if one specifies the number of products to be tasted, say t, 49 
and the number to be evaluated at a tasting session, say k, then the number of tasters b, the 50 
number of repeat tastings of each product, say r, and the number of tasters who evaluate each 51 
pair of products, say λ, are all fixed by design, not the sensory scientist. To lessen this problem 52 
a solution is to use partially-balanced incomplete block designs. These are not usually 53 
discussed in sensory evaluation texts, perhaps because the computation involved in their 54 
analysis was once quite difficult. Modern computing has now made such computation routine.  55 

The purpose of this expository note is to illustrate the Skillings and Mack approach 56 
(hereafter SM; Skillings and Mack, 1981, or Hollander and Wolfe, 1999) and analysis of 57 
variance (ANOVA) approaches to analysis of ranking data from partially-balanced incomplete 58 
block designs. We consider a simple, four-product data set and a more complicated six-product 59 
data set. Another important consideration is that partially-balanced incomplete designs reduce 60 
the number of blocks or judges needed for a reasonable design. Sections 2 and 3 illustrate the 61 
SM approach while Section 4 illustrates the ANOVA approach. 62 

Before proceeding we emphasise that we are not generally advocating the use of 63 
partially-balanced designs in place of BIBs.  The partially-balanced designs can be used if a 64 
BIB is not possible with the sensory scientist’s available resources.  However, if a BIB is 65 
compatible with the resources available, it should be used because (i) it is more statistically 66 
efficient and (ii) does not need a variance-covariance matrix to make pairwise comparisons. 67 

We note that the two approaches used here can also be used for randomised complete 68 
block and BIB designs when there are missing values.  Further, the two approaches can be used 69 
for any blocked unbalanced design. 70 
 71 
 72 
2. A Simple Example 73 
 74 

Suppose we have four products (t = 4) to be ranked two at a time (k = 2) by eight judges 75 
(b = 8), with the outcome shown in Table 1. Each product has been evaluated r = 4 times. 76 
Clearly this is an incomplete block design but it is not balanced as product 1 was not evaluated 77 
with product 3 and product 2 was not evaluated with product 4. This simple partially-balanced 78 
incomplete block design is also known as a cyclic design. If the design had been balanced an 79 
appropriate test is Durbin’s well known rank test (see, for example, Gacula et al. 2009). 80 
Durbin’s test statistic is calculated as a sum of squares but, because of the partial balance, the 81 
SM extension of Durbin’s approach involves a quadratic form aTV–1a, say, where V is a 82 
variance-covariance matrix and a is a vector of adjusted sum of ranking totals for each product. 83 
The matrix V = (vij) is easily calculated. For products i and j (i ≠ j), –vij is the number of times 84 
products i and j are evaluated by the same judge. For each value of i the vii values are taken to 85 
be –∑≠ ji ijv . Deleting the last row and column, for the Table 1 data we have 86 

 87 
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V = 


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242

024
. 88 

 89 
Using standard software, or by hand calculation, the inverse in this case is 90 
 91 

V–1 = 
















375.025.0125.0
25.05.025.0
125.025.0375.0

. 92 

 93 
If Ri is the sum of the ranks of product i, then the adjusted sum, *

iR  say, and the ith element 94 

of a, is *
iR  = ( ) ( ){ }2/11/12 rkRk i +−+  = 2(Ri – 6) here. We find that aT = (4, –4, 4), where 95 

the fourth element has been dropped. Hence, SM = aTV–1a = 8.0 on t – 1 = 3 degrees of 96 
freedom. If the fourth row and column of V and the fourth element of a had not been dropped 97 
then a generalised inverse of V would have been needed. Finally, using the 2

3χ  approximation, 98 
a significant p-value of 0.046 is obtained.  99 
 100 

Given that the p-value is less than 0.05, we might also be interested in multiple pairwise 101 
comparisons. The absolute values of the pairwise adjusted rank sum differences, that is 102 

**
ji RR −  for i ≠ j, are given by the matrix 103 

 104 


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−
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. 105 

 106 
To get the corresponding least significant differences (LSDs), we need the standard 107 

errors of these differences. These can be found from the matrix V above. For example, 108 
)var( **

ji RR − = vii + vjj – 2vij. Further, using a studentized rank statistic approach to pairwise 109 
comparisons, we also need the (1 – α)th quantile for t products and infinite degrees of freedom. 110 
We call this quantile α−

∞
1
,tq  and, for α = 0.10 or 0.05, find it using, for example, Gacula et al. 111 

(2009, Table A6). Alternatively, using the statistical package R (R Development Core Team 112 
2009), α−

∞
1
,tq  may be found with the command “qtukey(1 – α, t, 10000)”. For example, we find 113 

90.0
,4 ∞q  = 3.24, and so the LSD for paired comparisons for the SM approach can be taken to be 114 

 115 

,)var(
2

1 **1
, jit RRq −−
∞
a  116 

for i ≠ j.  Observe that use of V implies pairwise comparisons are more difficult than with a 117 
BIB where only a single variance, not a matrix, is needed.  This provides a further reason to 118 
use a BIB design if possible. 119 

For the present data set and α = 0.05 there are no significant differences. With α = 0.10, 120 
the matrix of LSD values for pairs (i, j), i ≠ j, to compare with **

ji RR −  is 121 
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 122 



















−
−

−
−

94.748.694.7
94.794.748.6
48.694.794.7
94.748.694.7

. 123 

 124 
Thus there are no significant pairwise comparisons at the 5% level. At the 10% level, *

2
*
1 RR − , 125 

*
4

*
1 RR − , *

3
*
2 RR −  and *

4
*
3 RR −  are significantly different: products 1 and 3 are not significantly 126 

different, and products 2 and 4 are not significantly different, and all other pairs of products are 127 
significantly different. 128 
 In our discussion above we have used a χ2 approximation to find p-values.  In our 129 
experience this is a common approach used by sensory scientists.  However, we note that 130 
modern computing power allows more accurate p-values to be obtained and Bi (2009) 131 
discusses how to do this for BIB designs.  It would be straightforward to adapt his approach for 132 
unbalanced designs. 133 
 134 
 135 
3. A More Complex Example 136 
 137 

Suppose we have t = 6 products, b = 6 judges, k = 4 products ranked (or scored and then 138 
ranked) by each judge and r = 4 ranks for each product. The data are shown in Table 2. 139 

We find SM = aTV–1a using a computer programme: an R package called nppbib 140 
(Allingham and Best 2010) performs this analysis (see the on-line supplement for details). 141 
Alternatively, an executable file to be run from the Microsoft Windows command line is 142 
available from the first author. We find aT = (–7.75, –4.65, –2.32, 3.10, 4.65, 6.97), V as below 143 
and SM = 12.33 on 5 degrees of freedom with a p-value of 0.03, based on the 2

5χ  144 
approximation. Note that for this example, and in Table 2, that the arithmetic mean of tied 145 
rankings is used. 146 
 147 

V = 

























−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−

1232223
3123222
2312322
2231232
2223123
3222312

 148 

 149 
Observe that for a BIB design with t = 6 and k = 4, the sensory scientist would need 15 150 

judges rather than six as in Table 2. Again, no significant pairwise differences occur for 151 
α = 0.05. However, when using α = 0.10 the first and sixth products are significantly different. 152 
 153 
 154 
4. An Alternative Approach for Tied Data 155 
 156 

In our more complex example of the previous section, a reasonable amount of the data 157 
were tied. In such cases we suggest not calculating SM, but rather 158 
 159 
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Q = b(k – 1)(t – 1)F/{(bk – b – t + 1) + (t – 1)F} 160 
 161 
where F is the between products F-value from an ANOVA performed on the ranks. Computer 162 
software should again be used to perform the ANOVA, provided that it copes with missing 163 
values by using a regression approach. If there are no ties then Q = SM. We suggest the statistic 164 
Q is better adjusted to ties than SM is and plan to investigate this point more thoroughly as part 165 
of a future paper comparing SM and Q. The Q statistic is discussed in Desu and Raghavarao 166 
(2004, Chapter 5) and in Conover (1998, Chapter 5), where it can be derived from his equation 167 
(6) on p. 389, by noting that his T1 is our Q and his T2 is our F. 168 

For the more complex data set, we find Q = 13.96 with a p-value of 0.02 using the 2
5χ  169 

approximation. This compares with SM = 12.33 and p-value of 0.031 found previously. 170 
For the simple data set, Q = SM as there are no ties. Note that for the simple data set F 171 

is infinite, and so Q = b(k – 1) = 8 as before. 172 
 173 
 174 
5. Conclusion 175 
 176 

Two examples have illustrated how to calculate the SM and Q statistics for partially-177 
balanced incomplete block designs. The data are ranks (or scores that are subsequently ranked) 178 
within blocks. Partial balance frees the sensory scientist from restrictions inherent in 179 
completely balanced designs. However, we advocate use of balanced designs when (i) 180 
resources allow their use and (ii) there are no missing values.  Incomplete block designs are 181 
often needed in sensory evaluation applications because of sensory fatigue or palate paralysis. 182 

Which of SM and Q is to be preferred? For smaller t and b and few tied ranks SM can 183 
be calculated by hand. For more tied data Q seems more likely to pick up significant 184 
differences but we plan to investigate this point in more detail in a future paper. Use the SM 185 
approach to give pairwise comparisons.  186 

The discussion we have given for the partially-balanced incomplete block designs can 187 
easily be extended to any block design with ranked data or to balanced block designs with 188 
missing values. 189 

We thank two referees and the editor for constructive suggestions. 190 
 191 
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Table 1. Rankings from eight judges on four products 211 
 Judge Products Ranks 
 1 1        2 2        1 
 2 2        3 1        2 
 3 3        4 2        1 
 4 1        4 2        1 
 5 1        2 2        1 
 6 2        3 1        2 
 7 3        4 2        1 
 8 1        4 2        1 
  212 
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Table 2. Rankings from 6 judges on 6 products 213 
Judge Products Ranks 

 214 
1 1 2 3 4 1 2 3.5 3.5 
2 2 3 5 4 1 2 3.5 3.5 
3 3 4 6 5 1 3 3 3 
4 4 5 1 6 2 3 1 4 
5 5 6 2 1 3.5 3.5 1 2 
6 6 1 3 2 4 1 2 3 

 215 


